G Protein-Coupled Receptor Signaling Analysis Using Homogenous Time-Resolved Förster Resonance Energy Transfer (HTRF®) Technology
نویسندگان
چکیده
Studying multidimensional signaling of G protein-coupled receptors (GPCRs) in search of new and better treatments requires flexible, reliable and sensitive assays in high throughput screening (HTS) formats. Today, more than half of the detection techniques used in HTS are based on fluorescence, because of the high sensitivity and rich signal, but quenching, optical interferences and light scattering are serious drawbacks. In the 1990s the HTRF® (Cisbio Bioassays, Codolet, France) technology based on Förster resonance energy transfer (FRET) in a time-resolved homogeneous format was developed. This improved technology diminished the traditional drawbacks. The optimized protocol described here based on HTRF® technology was used to study the activation and signaling pathways of the calcium-sensing receptor, CaSR, a GPCR responsible for maintaining calcium homeostasis. Stimulation of the CaSR by agonists activated several pathways, which were detected by measuring accumulation of the second messengers D-myo-inositol 1-phosphate (IP1) and cyclic adenosine 3',5'-monophosphate (cAMP), and by measuring the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Here we show how an optimized HTRF® platform with numerous advantages compared to previous assays provides a substantial and robust mode of investigating GPCR signaling. It is furthermore discussed how these assays can be optimized and miniaturized to meet HTS requirements and for screening compound libraries.
منابع مشابه
HTRF: A Technology Tailored for Drug Discovery –A Review of Theoretical Aspects and Recent Applications
HTRF (Homogeneous Time Resolved Fluorescence) is the most frequently used generic assay technology to measure analytes in a homogenous format, which is the ideal platform used for drug target studies in high-throughput screening (HTS). This technology combines fluorescence resonance energy transfer technology (FRET) with time-resolved measurement (TR). In TR-FRET assays, a signal is generated t...
متن کاملDevelopment of a HTRF® Kinase Assay for Determination of Syk Activity
Regulation of protein phosphorylation is a primary cellular signaling mechanism. Many cellular responses to internal and external events are mitigated by protein kinase signaling cascades. Dysfunction of protein kinase activity has been linked to a variety of human pathologies, in the areas of cancer, inflammation, metabolism, cell cycle, apoptosis, as well as cardiovascular, neurodegenerative ...
متن کاملHyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse
We present here a novel method for the semi-quantitative detection of low abundance proteins in solution that is both fast and simple. It is based on Homogenous Time Resolved Förster Resonance Energy Transfer (HTRF), between a lanthanide labeled donor antibody and a d2 or XL665 labeled acceptor antibody that are both raised against different epitopes of the same target. This novel approach we t...
متن کاملTowards monitoring conformational changes of the GPCR neurotensin receptor 1 by single-molecule FRET
Neurotensin receptor 1 (NTSR1) is a G protein-coupled receptor that is important for signaling in the brain and the gut. Its agonist ligand neurotensin (NTS), a 13-amino-acid peptide, binds with nanomolar affinity from the extracellular side to NTSR1 and induces conformational changes that trigger intracellular signaling processes. Our goal is to monitor the conformational dynamics of single fl...
متن کاملA Protein L -Based Immunodiagnostic Approach Utilizing Time-Resolved Förster Resonance Energy Transfer
Chelated lanthanides such as europium (Eu) have uniquely long fluorescence emission half-lives permitting their use in time-resolved fluorescence (TRF) assays. In Förster resonance energy transfer (FRET) a donor fluorophore transfers its emission energy to an acceptor fluorophore if in sufficiently close proximity. The use of time-resolved (TR) FRET minimizes the autofluorescence of molecules p...
متن کامل